From the Field: Improving fetal and infant growth in vulnerable populations

Seth Adu-Afarwuah, PhD University of Ghana, Legon May, 2017

Outline

- Fetal and infant growth in vulnerable populations
 - Growth faltering begins prenatally
 - Continues until about 24 mo of age
- Impact of small-quantity lipid-based nutrient supplements (SQ-LNS) consumption in Ghana
- Final recommendations

At birth, for most regions of the world, average weightfor-age z-scores are already below the WHO standard

• Z-scores decline moderately, then peaks at ~24 mo

EURO, Europe and Central Asia; EMRO, North Africa and the Middle East; AFRO, Sub-Saharan Africa; PAHO, Latin America and the Caribbean; SEARO, South Asia. Source: Victora et al, 2010. Pediatrics 125: e473–e480.

At birth, average height/length-for-age z-scores are well below WHO standard, for most regions of the world

Z-scores decline sharply until ~ 24 mo

EURO, Europe and Central Asia; EMRO, North Africa and the Middle East; AFRO, Sub-Saharan Africa; PAHO, Latin America and the Caribbean; SEARO, South Asia. Source: Victora et al, 2010. Pediatrics 125: e473–e480.

Source: Unicef, 2011 (https://www.unicef.org/nutrition/training/2.5/4.html

Inadequate nutrient intakes are a major cause of fetal and infant growth faltering

One reason for inadequate dietary intakes is the high nutrient needs during pregnancy and lactation

		Percentage increase	e over NPNL RDA
Nutrient	NPNL	Pregnancy	Lactation
Protein	46 g	54	54
Vitamin A	700 µg	10	86
Vitamin C	75 mg	13	60
Vitamin B ₆	1.3 mg	46	54
Folate	400 µg	50	25
odine	150 µg	47	93
ron	18 mg	50	-50
Zinc	8 mg	38	50

Adu-Afarwuah et al, 2017

Also, the high nutrient needs during infancy and childhood are difficult to meet

Nutrient	RDAs for adult	% increases	in DRIs for	Nutrient	RDAs for adult	% increases	s in DRIs for
	male (per kg	infants and young children			male (per kg	infants and young children	
	body weight)	6 mo^2	12 mo^2		body weight)	6 mo^2	12 mo^2
Energy ⁴	44 kcal^5	84	84	Vitamin B ₁₂	<u>0.03 μg</u>	67	67
Protein	0.7 g	65	43 ³	Calcium	14 mg	79	93
Vitamin A	13 µg	292	300	Copper	13 ug	92	77
Vitamin C	1.3 mg	292	300	Iodine	2 µg	600	600
Vitamin E	0.2 mg	150	150	Iron	$2 \mu g$	100	1000^{3}
Thiamin	0.02 mg	50	50		0.1 llig	-100	1000
Riboflavin	0.02 mg	100	100	Magnesium	6 mg	-33	33
Niacin	0.2 mg	50	100	Phosphorus	10 mg	30	190
Vitamin B ₆	5 0.02 mg	-50	50	Selenium	1 µg	100	100
Folate	5.7 µg	44	46	Zinc	0.2 mg	50	50^{3}

Our project developed the Small-quantity lipid-based nutrient supplements (SQ-LNSs) for enriching local diets (1)

Arimond M, Zeilani M, Jungjohann S, Brown KH, Ashorn P, Allen LH, Dewey KG. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLiNS) Project. Mat Child Nutr epub May 2013.

Small-quantity lipid-based nutrient supplements (SQ-LNSs) is nutrient-dense

- Typically 20 g/day
- Currently women (LNS-P&L) and children (LNS I&C).
- Includes 22 vitamins & minerals usually 1x 2x
 RDA or Adequate Intakes (AI) or maximum amount that can be added (eg. Ca, P, K, Mg)
- Essential fatty acids (linoleic acid and alphalinolenic acid)
- Protein, fat, and 118 kcal energy
- Mixed with small amount of home-prepared food

Arimond M, Zeilani M, Jungjohann S, Brown KH, Ashorn P, Allen LH, Dewey KG. Considerations in developing lipid-based nutrient supplements for prevention of undernutrition: experience from the International Lipid-Based Nutrient Supplements (iLiNS) Project. Mat Child Nutr epub May 2013.

We designed the iLiNS-DYAD trial to evaluate the efficacy of LNS for pregnant & lactating women plus LNS for children 6-18 mo

Group	Pregnancy	Lactation	6-18 mo
LNS	LNS-P&L	LNS-P&L	LNS-I&C
MMN	MMN	MMN	
IFA	Fe + Folic acid	Placebo (Ca)	

Main hypotheses:

- 1) SQ-LNS consumed in pregnancy promotes fetal growth
- "Comprehensive SQ-LNS use" promotes healthy growth by 18 months of age

Findings: SQ-LNS and Fetal growth (1)

- Prenatal SQ-LNS supplementation:
 - Increased birth weight compared with IFA and MMN
 - (including WAZ, and BMIZ, and trend toward reducing LBW).
 - In pairwise comparison with IFA
 - increased mean birth wt by +85 g (WAZ +0.19 and BMIZ +0.21)
 - reduced risk of LBW by 39%

Findings: SQ-LNS and Fetal growth (2)

- Effect of SQ-LNS more pronounced in first-time mothers:
 - Increased mean birth length, weight, and head circumference when compared to IFA.
 - Similar differences when comparing with MMN.

Findings: SQ-LNS and child growth by 18 mo of age

- SQ-LNS provided through much of the "first 1000 days" :
 - Increased attained length and weight compared to IFA group
 - +0.85 cm; +0.28 in LAZ; +0.30 kg; +0.24 in WAZ
 - Reduced the prevalence of stunting compared to IFA (8.9% v.15.1%).

Length-for-age z-score from birth to 18 mo of age

-LNS ---MMN ----IFA

Conclusions

SQ-LNS consumption:

- improved birth outcomes among primiparous women; the impacts were consistent for weight, length, head circumference
- reduced stunting by 18 mo of age; impact is attributable to differences in size at birth

Interpretation (1)

- Prenatal SQ-LNS supplementation may help offset the influence of risk factors for small birth size in vulnerable women.
- Low rate of stunting by 18 mo of age (12%) in Ghana suggests fewer constraints on child growth, hence nutrition-only interventions may be effective.

Research recommendation

- Investigate reasons for response to LNS intervention in some but not in other contexts
- In contexts such as Ghana, would milkcontaining LNS be more efficacious than LNS without milk?
- Assess LNS interventions in the context of programmatic initiatives that integrate nutrition into more comprehensive strategies

Action recommendations

- Use of SQ-LNS in programs should be preceded by a needs assessment/situation analysis
- Program planners should begin with a smallerscale program, before taking it to scale.
- LNS intervention may be accompanied by adequate access to health care and/or better sanitation and hygiene or stronger response

Acknowledgments

University of Ghana

Thanks to the iLiNS Project for supporting this presentation, through a grant to the University of California, Davis from the Bill & Melinda Gates Foundation

Thank you